
Journal of Statistical Physics, Vot. 57, Nos. 1/2, 1989

Vectorized Multisite Coding for
Hydrodynamic Cellular Automata

U. Brosa l and D . Stauffer 1

Received April 11, 1989; revision received June 22, 1989

Simulating eight lattices for Pomeau's cellular automata simultaneously through
bit-per-bit operations, a vectorized Fortran program reached 30 million updates
per second and per Cray YMP processor. We give the full innermost loops.

KEY WORDS: Multi-spin coding; vector computer; hydrodynamics.

One of the most practical aspects of cellular automata (1) is the application
to two-dimensional hydrodynamics. (2) One places the molecules on the
sites of a large triangular lattice such that no site is occupied by more than
one particle having the same velocity. Each particle can be at rest, or can
have a velocity pointing to one of its nearest neighbors. At each time step,
the molecules move to their neighbors and are scattered there into a dif-
ferent lattice direction. For liquid-vapor critical phenomena, an analogous
lattice gas approximation, the spin-l/2 Ising model, has given critical
exponents in agreement with real three-dimensional fluids. Analogously, it
is hoped that these lattice gas cellular automata describe correctly at not
too high Reynolds numbers the hydrodynamic behavior averaged over
many molecules. A detailed introduction to these automata is given by
d'Humieres e ta / . (3)

Just as for Ising models, also for hydrodynamic cellular automata
special-purpose computers have been constructed which simulate them at
a very high speed per hardware dollar; ref. 3 gives 6.5 million updates per
second on such a machine. Nevertheless, general-purpose computers
dominate in Ising model research. Many papers have been published on
how to use the bit-by-bit handling procedures of most Fortran compilers

HLRZ, c/o KFA Julich, 5170 Julich l, West Germany.

399

0022-4715/89/1000-0399506,00/0 @ 1989 Plenum Publishing Corporation
822i57/1-2-26

400 Brosa and Stauffer

to process many sites in parallel (multi-spin-coding) to save time and
memory(4); further speedup is gained by running these parallel codes on
vector computers. Similarly, we present here a vectorized multi-site-coding
algorithm for hydrodynamic automata, hoping that soon the published
literature will contain alternatives and further improvements. A full copy of
our 200-line program is available from HLRZ (bitnet HKF211 or
HKU001 at DJUKFAll) .

At the beginning, a collision table is defined, as given, e.g., in ref. 3, to
connect the at most 256 different input configurations of each site with the
output configuration. For this purpose we number the six directions clock-
wise and associate with them six bits of each eight-bit byte. If two particles
collide at a site with exactly opposite momenta, they may have directions
1 and 4, for example, and thus an input index of 21 + 24 = 18. They are
scattered into the directions 3 and 6, setting the seventh bit representing
the angular momentum. Thus, the output index is 23 + 26 + 27 = 200. Thus,
our collision table contains ICOL(18)=200 and, because of microscopic
reversibility, also ICOL(200)= 18. A particle at rest is marked by bit zero
and contributes 2~ 1 to the index; for example, a molecule from direction
1 (thus flying into direction 4) and hitting a particle at rest may create a
pair of particles moving in directions 3 and 5: index 2 o + 24 = 17 becomes
index 23 + 25 = 40, or ICOL(17)=40, ICOL(40)= 17. Probabilistic deci-
sions are avoided. Similar tables are published in ref. 3; we list here our
complete collision table:

DO 10 I=0,255
10 ICOL(I) = I

ICOL(3)=68
ICOL(5)=10
ICOL(9)=20
ICOL(17)=40
ICOL(33)=80
ICOL(65)=34

C 6 TWO-PRONG EVENTS, THEN 3 HEAD-ON
C COLLISIONS/ROTATIONS

ICOL(18)=200
ICOL(36)= 146
ICOL(72) = 164
DO 11 I=0,255

11 ICOL(ICOL(I)) =I

The velocities of the particles at site x, y are stored in an array
IV(IX, IY) containing the appropriate index in its last eight bits. From the
velocities IV at time t - 1 we calculate first an array IU(IX, IY) giving the

Hydrodynamic Cellular Automata 401

configurations at time t shortly before the collision. This transfer of
particles (stream loop) is achieved in our bit notation by setting IU(IX, IY)
equal to

AND(IV(IX
AND(IV(IX
AND(IV(IX
AND(IV(IX

,IY), 129)+
- l, I Y - 1),2) + AND(IV(IX , I Y - 1),64)+
- 1 , I Y),4) + AND(IV(IX + 1,IY),32)+

, IY+ 1), 8) + AND(IV(IX + 1,IY+ 1), 16)

[The triangular lattice is mapped onto a square lattice with nearest
neighbors plus two additional neighbors at IX+ 1, I Y + I and at I X - l ,
IY-1 . Then the new configuration is obtained, in principle, by
IV(IX, IY) = ICOL(IU(IX, IY)) (collision loop).]

We now save time and memory by putting eight lattices into the 64-bit
words of a Cray-XMP vector computer, or four into the 32-bit words of an
IBM 3090 (without vector feature). This is done in the collision loop basi-
cally by replacing the number 2 there through bit masks containing eight
times the number 2, shifted by 8, 16, 24, etc., bits; analogous bitmasks are
used instead of the number 4, etc. The collision loop unfortunately cannot
treat the different lattices simultaneously and thus adds up the suitably
shifted bytes from ICOL(IU(IX, IY)). The two loops now are

�9 C STREAM LOOP
DO 100 IX= 1,NX
DO 100 I Y = I , N Y

100 1U(IX, IY) = OR(OR(OR(OR(OR(OR(AND(IV(IX, IY), M 129),
1 AND(IV(IX- 1, I Y - 1), M2)), AND(IV(IX , I Y - 1),M64)),
2 AND(IV(IX- 1, IY), M4)),AND(IV(IX + 1, IY), M32)),
3 AND(IV(IX , IY+ 1), M8)),AND(IV(IX + 1,IY + 1), M16))

C COLLISION LOOP
DO 200 I X = I , N X
DO 200 I Y = I , N Y

200 IV(IX, IY)=IOR(IOR(IOR(
1 ICOL(IAND(IU(IX, IY) ,255)),
2 ISHFT(ICOL(IAND(ISHFT(IU(IX, IY), -8),255)), 8)),
3 ISHFT(ICOL(IAND(ISHFT(IU(IX, IY), - 16), 255)), 16)),
4 ISHFT(ICOL(IAND(ISHFT(IU(IX, IY), - 24), 255)), 24))

for the 32-bit IBM, and suitably expanded in the collision part for the
64-bit Cray computer.

With this program, we got a speed of 1.3 updates per microsecond and
per processor on the IBM 3090, about 23 updates on the Cray-XMP, and
about 30 updates on the Cray-YMP. With one instead of eight lattices
simulated in parallel, the Cray speed is less than half as large.

402 Brosa and Stauffer

These speeds do not contain initialization and analysis. For example,
the total number of molecules flying in a certain direction is obtained by
the Cray intrinsic function POPCNT counting the number of up bits in a
velocity word. (6) Here we again achieved full parallelization for the eight
lattices analyzed simultaneously, as well as full vectorization; the IBM runs
much slower here.

We tested our program by starting with a sinusoidal laminar flow 15)
and wavelengths equal to the perpendicular system length, to half of it, and
to one-quarter of it. The velocities, averaged over many sites, then are sup-
posed to decay as exp(-vk~t) with v as the kinematic viscosity. The kinetic
flow energy decays with twice this exponent. Indeed, we found in lattices up
to size 920 �9 920 such an exponential decay of the energy over two decades
before it was overtaken by noise, with v near 0.55. (The time unit is one
sweep through the lattice, and we went up to t = 104. The length unit is the
nearest neighbor distance of the triangular lattice.)

An alternative approach uses logical operations only and stores one
site per bit. (6'7) Speeds of up to 300 updates per microsecond were obtained
in an assembler language program using all four processors of a
Cray-XMP. (7) Our Fortran program would need all eight processors of the
Cray-YMP to get nearly the same speed, but is more transparent if one
wants to change the collision rules. Even faster are simulations on 65,536
processors of the connection machine with more than 1000 updates per
microsecond. (7,8)

In summary, we achieved full vectorization and partial parallelization
through multisite coding of hydrodynamic cellular automata, storing eight
lattices simultaneously into 64-bit words.

A C K N O W L E D G M E N T S

We thank D. d'Humieres, G. D. Doolen, and H. J. Herrmann for very
helpful correspondence and discussion.

N O T E A D D E D IN P R O O F

We have received a preprint by H. A. Lim, G. Riccardi, C. Bauer and
S. Sharma, entitled "A vector algorithm for lattice gas hydrodynamics," to
appear in the International Journal of Supercomputer Applications, Winter
issue 1990. An algorithm is presented through which the CYBER 205 can
perform about 10 million updates per second.

Hydrodynamic Cellular Automata 403

R E F E R E N C E S

l. S. Wolfram, ed., Theory and Applications of Cellular Automata (World Scientific,
Singapore, 1986).

2. J. Hardy, Y. Pomeau, and O. de Pazzis, Z Math. Phys. 14:1746 (1973); J. Hardy, O. de
Pazzis, and Y. Pomeau, Phys. Rev. A 13:1949 (1976); U. Frisch, B. Hasslacher, and
Y. Pomeau, Phys. Rev. Lett. 56:1505 (1986).

3. D. d'Humieres, P. Lallemand, J. P. Boon, D. Dab, and A, Noullez, in Chaos and
Complexity, R. Livi, S. Ruffo, S. Ciliberto, and M. Buiatti, eds. (World Scientific,
Singapore, 1988); D. d'Humieres and P. Lallemand, Complex Systems 1:599 (1987).

4. R. Zorn, H. J. Herrmann, and C. Rebbi, Comput. Phys. Comm. 23:337 (1981); C. Kalle and
V. Winkelmann, J. Stat. Phys. 28:639 (1982); S. Wansleben, J. G. Zabolitzky, and C. Kalle,
J. Stat. Phys. 37:271 (1984); G. Bhanot, D. Duke, and R. Salvador, J. Stat. Phys. 44:985
(1986); S. Wansleben, Comput. Phys. Comm. 43:315 (1987); M.Q. Zhang, J. Star. Phys.
(1989).

5. J. P. Dahlburg, D. Montgomery, and G. D. Doolen, Phys. Rev. A 36:2471 (1987).
6. H. J. Herrmann, J. Stat. Phys. 45:145 (1986).
7. G. D. Doolen, APS meeting on Computational Physics, Boston (June 1989).
8. F. Hayot, M. Mandal, and P. Suddayappan, J. Comp. Phys. 80:277 (1989); B.M.

Boghosian, W. Taylor IV, and D.H. Rothman, Thinking Machines Corporation report
CA88-1 (November 1988); G. Vichniac, in Instabilities and Nonequilibrium Structures,
E. Tirapegui and D. Villarroel, eds. (D. Reidel, 1989).

Communicated by J. L. Lebowitz

